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BOUNDS FOR EIGENVALUES AND CONDITION NUMBERS IN 
THE p-VERSION OF THE FINITE ELEMENT METHOD 

NING HU, XIAN-ZHONG GUO, AND I. NORMAN KATZ 

ABSTRACT. In this paper, we present a theory for bounding the minimum 
eigenvalues, maximum eigenvalues, and condition numbers of stiffness matrices 
arising from the p-version of finite element analysis. Bounds are derived for the 
eigenvalues and the condition numbers, which are valid for stiffness matrices 
based on a set of general basis functions that can be used in the p-version. For a 
set of hierarchical basis functions satisfying the usual local support condition 
that has been popularly used in the p-version, explicit bounds are derived 
for the minimum eigenvalues, maximum eigenvalues, and condition numbers 
of stiffness matrices. We prove that the condition numbers of the stiffness 
matrices grow like p4(d 1), where d is the number of dimensions. Our results 
disprove a conjecture of Olsen and Douglas in which the authors assert that 
"regardless of the choice of basis, the condition numbers grow like p4d or 
faster". Numerical results are also presented which verify that our theoretical 
bounds are correct. 

1. INTRODUCTrON 

In the last fifteen years or so, one of the major advances in the area of finite ele- 
ment analysis has been the development of the p-version and the h-p version of the 
finite element methods. The classical finite element method, also called h-version, 
achieves the accuracy of its finite element solution by decreasing the mesh size h 
while the degree of the polynomial basis functions is fixed [15]. In the p-version, 
the accuracy of the finite element solution is achieved by increasing the degree p of 
the polynomial basis functions while the mesh is fixed [1],[2],[20]. The h-p version 
is the combination of both the h-version and the p-version [3],[5]. Theoretical anal- 
ysis and computational practice of the p-version of the finite element method have 
been carried out during the last decade. Currently, the theoretical development and 
computational practice of the h-p version of the finite element method are active 
research areas. 

By comparing the two methods, namely the p-version and the h-version, one 
may notice that for many theoretical results developed in the h-version there are 
corresponding theoretical results in the p-version. One example is the convergence 
of the h-version and the p-version. Even though there are many such correspon- 
dences, there are some results that were developed in the h-version, but have not yet 
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been developed in the p-version. One of such missing correspondence is a generic 
bound for the minimum eigenvalue, maximum eigenvalue, and condition number of 
a general stiffness matrix arising from the p-version of finite element analysis. More 
specifically, it is well known that in the h-version under uniform or quasi-uniform 
mesh the condition numbers are bounded by O(h-2) [15]. This result is very useful 
in many theoretical analyses that relate to the h-version. For example, in many 
convergence analyses of multigrid methods, this result is one of the key elements in 
deriving convergence factors [9],[10],[11]. Also, the condition number is critical to 
the convergence of the conjugate gradient algorithms [14]. 

In the p-version, however, to our knowledge there is no general theory to char- 
acterize the minimum eigenvalue, maximum eigenvalue, and condition number of a 
stiffness matrix based on a set of general polynomial basis functions. It is obvious 
that there are many different types of basis functions that can be used in the p- 
version, such as basis functions based on the Legendre polynomials, basis functions 
based on Chebyshev polynomials, etc. Therefore, we believe that a general the- 
ory concerning the eigenvalues and condition numbers in the p-version is not only 
necessary but also very useful. 

In this paper, we present a theory for bounding the eigenvalues and condition 
number of a general stiffness matrix arising from the p-version of finite element 
analysis. Bounds are derived for the eigenvalues and condition number which are 
valid for a stiffness matrix based on a set of general basis functions that can be used 
in the p-version. After developing such a general theory, we turn our attention to 
a special class of basis functions: a set of hierarchical basis functions satisfying the 
usual local support condition that has been popularly used in the p-version [21]. 
Explicit bounds are derived for the minimum eigenvalues, maximum eigenvalues, 
and condition numbers of a stiffness matrix based on these basis functions. We 
prove that the condition numbers of the stiffness matrices grow like p4(d-1), where 
d is the number of dimensions. Our results disprove a conjecture of Olsen and 
Douglas [22] in which the authors assert that "regardless of the choice of basis, the 
condition numbers grow like p4d or faster". 

Maitre and Pourquier [16],[17] have obtained results for condition numbers for 
the hierarchical basis functions mentioned above. Our results are similar to those 
in [16],[17], but different in a substantial way. The results in [16],[17] apply only 
to the internal basis functions (so-called "bubble" modes); ours apply to all basis 
functions and are therefore applicable to practical finite element analysis, which 
includes all modes. Also the results in [16] and [17] are for the derivative matrix 
and mass matrix separately, whereas ours are also for the sum of the derivative 
matrix and mass matrix. 

The paper is organized as follows. Section 2 contains definitions and some pre- 
liminary results. Bounds for the minimum eigenvalues, maximum eigenvalues, and 
condition numbers are derived in Section 3. In Section 4, for a set of hierarchi- 
cal basis functions, explicit bounds are derived for the eigenvalues and condition 
numbers. Numerical results are also given in this section. 

2. PRELIMINARY 

Let Q c Rf2 be a bounded domain with piecewise smooth boundaries OQ. For 
any integer k > 0, let Hk(Q) (or HjO(Q)) be the standard Sobolev space. 



BOUNDS FOR EIGENVALUES AND CONDITION NUMBERS IN THE p-VERSION 1425 

Consider a second order elliptic partial differential equation 
( -V(aVu) + bu = g in Q 

(2.1) u=O on pD 
u 

= h on EN, 
where rD u rN =aQI a E C1(Q), b E C(Q), a(x) > ac > 0, b(x) > 0 and 
g E L 2(Q). 

Define 

(2.2) H(Q) = {eu u E H1(Q),lu = 0 on FD} 

and 

(2.3) a(u,v) = j(aVu Vv +buv)dx, 

(2.4) f(v) = j gvdx + j hvds. 
Q r~N 

We assume that the bilinear form a(u, v) satisfies the V-ellipticity assumption 

(2.5) a(u, u) > ClIUfll2(Q), 

where C > 0 is a constant. 

The exact solution. Find u E H(Q) such that 

(2.6) a(u, v) = f (v> 

for all v E H(Q), where u is called the exact solution. The exact solution exists 
and is unique under common assumptions for g,h and aQ. 

Let K = [-1,1] x [-1,1] be the standard element and let a set of standard 
polynomial basis functions with degree < p be denoted by b: 

(2.7) = [X1 ((i 77) I ?2 ((i 77) I .. I Kp ((v )] I 

where Kp is the number of degrees of freedom on the standard element. 
For the model problem (2.1), let E = {e} be a finite element mesh of the domain 

Q. In the p-version, the set E consists of a finite number of elements, and will not 
change throughout the solution process. The basis functions defined on domain Q, 
which are based on the standard basis functions X and the finite element mesh E, 
are denoted by 

(2.8) [D= [1i(x,Y),J 2(x,y),... ,INp (XIY)]I 

where Np is the number of degrees of freedom for the global problem. 
Let Vp c H(Q) be the p-version of the finite element space spanned by the 

polynomial basis functions (d. 
The finite element solution in the p-version. Find a function u E Vp c 

H(Q) such that 

(2.9) a(u,v) =f(v) Vv E Vp. 
From the V-ellipticity assumption, it is easy to see that there exist positive 

constants c and C such that 

(2.10) cd(u, u) < a(u, u) < Ca(u, ), 
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where 

(2.11) d(u, v) = j (Vu Vv + uv) dx. 

Define 

(2.12) Vp H (Q) n Pp(Q), 

where Pp(Q) is the space of piecewise polynomials of degree < p. 
Vp may be regarded as the finite element space with only Neumann boundary 

conditions. It is easy to see that Vp C Vp. Analysis is easier over Vp than over Vp, 
since the elemental stiffness matrices over Vp all have the same size, provided the 
p-level is uniformly distributed, whereas this may not be the case over the space 'Vp 
due to possible Dirichlet boundary conditions. 

Let {J (i}NP be the basis functions of Vp and { 4?}"IP be the basis functions of 

VP. Obviously, Np < Np. The stiffness matrix based on a(u, u) over Vp is defined 
by 

(2.13) A = (aij) = (a(JDi, (kj))v 

and the stiffness matrix based on &(u, u) over Vp is defined by 

(2.14) A = (aij) = (&(JD,i j)). 

It is easy to show that 

(2.15) CAmin(A) < Amij(A) < Amax(A) < CAmax(A). 

Therefore, we have 

Lemma 2.1. There exists a constant C, independent of the mesh and p-level, such 
that 

(2.16) r,(A) < cr,(A). 

Remark 1. For the rest of this paper, we consider only the bilinear form &(u, v) over 
Vp and the corresponding stiffness matrix A. But for the simplicity of notation, we 
will use a(u v), Vp, and A to stand for &(u v), vp, and A, respectively. 

On the standard element K, we define the stiffness matrix by 

(2.17) AK = (aij)K = (aQ(?i, I)j)). 

Let a pair of mapping functions between an element e E E and the standard 
element K be denoted by 

(2.*18) { y(( 1 

and the Jacobian matrix by Je((;, 7). 
A basic assumption for mapping functions (2.18) is that their inverses exist. In 

practice, we can assume that the Jacobian matrix is nonsingular on K, which is 
equivalent to 

(2.19) det (Je((, 71)) + 0 for any ((, 7r) E K. 
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In general, the determinant det(Je) is a continuous function on K; therefore, there 
exist two constants ce > ce > 0 such that 

(2.20) ae < Idet(Je)t < ce for every ((,Q) E K. 

Let 

(2.21) Ce = max Kmax ((JeJe F)) 

and 

(2.22) Ce = min Amin ((JeJe) 

Then, since K is a compact set in R2, we have 

(2.23) 0 < Ce < Ce < ?. 

Let Ae be the elemental stiffness matrix, then, the stiffness matrix A can be 
assembled from the elemental stiffness matrices by 

(2.24) A = MeAeMe T, 
eeE 

where the matrix Me is the Np x Kp transformation matrix. Let x cE RNP, define 

(2.25) xe = MT x 

then, xe E RKp 
To derive the bounds, we first need to establish a relationship between elemental 

stiffness matrices and the stiffness matrix on the standard square element. 
It is easy to show (see [12] for details) that for each element e E E, we have 

(2.26) c (AKXe, Xe) < (AeXe, Xe) x C/ (AKXe, Xe), 

where ce = max{Cece, ce} and =minttCcCe, ae} 

By using (2.26) and the Rayleigh quotient, one can show [12] the following re- 
lationships of eigenvalues and condition numbers between stiffness matrices on the 
general domain Q and on the standard element K. 

Theorem 2.1. For a stiffness matrix A on the general domain Q, its maximum 
eigenvalue is bounded by 

(2.27) aeAmax(AK) < Amax(A) < CEAmax(AK), 

where CE maxeeE{CEe}, CE = LeE C'; its minimum eigenvalue is bounded by 

(2.28) A'9min(AK) < Amin(A), 

where C mineeE{ 'E}; and, therefore, its condition number is bounded by 

(2.29) Ki(A) < CE K(AK), 

where ' = CE 
E 

Remark 2. The inequalities analogous to (2.27), (2.28) and (2.29) also hold for the 
mass matrices M and MK, where 

(2.30) M = (mrnij) = J ynj jdx, 

and MK is the corresponding mass matrix defined on the standard element K. 
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Remark 3. The constants in bounds of (2.27), (2.28) and (2.29) depend only on 
the topology of the problem domain, the mesh and the mapping functions, but are 
independent of the differential operator and the basis functions. The eigenvalues 
of Amax(AK) and Amin(AK) depend only on the differential operator and the basis 
functions. 

In Section 3, we derive bounds for the eigenvalues and condition number of A. 
In Section 4, we focus our attention on the stiffness matrix AK on the standard 
element. 

3. BOUNDS FOR THE EIGENVALUES 

AND CONDITION NUMBER IN THE P-VERSION 

Let Vp be the finite element space spanned by the basis functions b. We define 
eigenvalues and eigenvectors of a(u, u) in the finite element space Vp as follows [4]. 

Associated with each space Vp are eigenvalues A(P) and eigenvectors @(P) E Vp) 
1 < i < Kp, satisfying 

(3.1) a -A(P)IV =$(P) ( P),v) for all v E Vp. 

Without loss of generality, we can assume 

(3.2) 0 < A(P) < A(P) < ... < A?P). 

For convenience, we will drop all the superscripts (p) from now on. Note that 

based on the above convention we have Amax = AKp and Amin = A1. Then, it is 

well known that 

a (u, u) 
(3.3) Amax (ax , a) Uevp-f0j (e,lu) 

and 

(3.4) Amin = min a(u) ) 
uEvp-{o} (U,U) 

Let 

U = Exjqj, 

then, it is easy to see that 

a(u,u) = (Ax,x), 

(U, ) = (Mx, x). 
The relationships among the maximum and minimum eigenvalues of a(u, u), A and 

M are as follows [12]: 

(3.5) Amax(a)Amin(M) < Amax(A) < Amax(a)Amax(M) 

and 

(3.6) Amin(a)Amin(M) < Amin(A) < Amin(a)Amax(M). 

Therefore, it follows easily that 

(3.7) r(a ) < Ki(A) < r,(a)fii(M)- 

Now, we want to find bounds for the eigenvalues of the bilinear form a(u, a). 
In order to derive bounds for the eigenvalues of the bilinear form, we need some 
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properties of Legendre polynomials. The following two properties of Legendre poly- 
nomials are well known [19]: 

1 ~~~~0 if m =An 
(3.8) J Pm(x) nP(x)dx= 2 ifm=rn 

n-2k-1>0 

(3.9) P(X) = (2n - 4k -1)Pn-2k-1(X). 

k=O 

Based on these two properties, one can show [12] that 

(3.10) J [Pnx()] dz = n(n + 1). 

We also need the following important inequality. 

Schmidt's inequality. For a polynomial f of degree not greater than N, the 
following inequality holds (see [1] and [8]): 

(3.11) 
- 
[(x) dx < (N2 ) [f(x)] dx. 

Theorem 3.1. The maximum eigenvalue Amax(a) of the bilinear form in Vp is 
bounded by 

(3.12) Cilp3 < Amax(a) < t2P, 

where c1 > 0 and C2 > 0 are constants independent of p. 

Proof. Without loss of generality, we can assume that the problem domain is the 
standard element Q = K [12]. For the left-hand inequality, by choosing Legendre 
polynomials Pp(xi) as particular functions for u, we have 

Amax(a) max au(u, u)>a (Pp, Pp) 
AmX()= 0U+ueXVP (e,lu) 

- 
(Pp, PP) 

Since 

a(Pp, Pp) J J (VPp VPp + p2 ) dx,dx2 

O x0P ?P+p ) dx1 

> 2j [Pp(xi)] dx1, 

by using the properties of Legendre polynomials, we have 

Amax(a) > p(p + 1)(2p + 1) > clp3. 

For the right-hand side inequality, for each fixed x2,up(x1,x2) is a polynomial 
of x1; therefore, by using Schmidt's inequality, we have 

(3.13) f U [ X 01(x ix2] dxl < cpj4 ip,X2)dxl. 
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By using (3.13), we get 

IK tl tld = jjX [(0 )2+(0J ) d1 dz 

< cp4 .J J u2(xi,x2)dx,dx2. 

Thus, we obtain 

a(uP, uP) < C2p4 U2dxidX2 
K 

or 

a(up,up) < C2p4(Up, Up). 

Therefore, 

Amax(ak) 
- m a(x P <,u )< 

XEVp-{o} (u,up) - 

For the minimum eigenvalue of the bilinear form, we have 

Theorem 3.2. The minimum eigenvalue Amin(a) of the bilinear form in Vp is 
bounded by 

(3.14) C3 < Amin (a) < C4, 

where C4 > C3 > 0 are constant, independent of p. 

Proof. For the left-hand inequality, by using the V-ellipticity (2.5), we have 

a (u, u) 
Amin(a) =minuEvP-f0o (u,u) 

= minuev-{ ( U)Hl(Q) 

flfiU HO(Q) 
> minUV-? 

HO 
(Q) 

Let O < C3 <_ 1, then 

(3.15) Amin (a) > C3 - 

For the right-hand inequality, by choosing a special polynomial U(xI, x2) =X, 
we have 

Amin(a) = mmin (U, u)< 
a 

(u, u) 
uevP-{o} (Uu,) - (a,a) 

and 

a(u, U) =j (Vu. V? + 2) dx 

= j dxIdx2 + X2dx,dx2 

? Q? Q 
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where 

(3.16) C=max x2. 
xeQ 

Similarly, 

(e) j = Xu2dxdx2 = x2dxldx2 < OI0I 

Define 

(3.17) C4= 

then, the desired result follows. O 

Remark 4. It is easy to see that the above proofs can be extended straightforwardly 
to Rfdd > 1 arbitrary. This means that the inequality (3.12) and (3.14) hold for 
the model problem (2.1) in Rd,d > 1 arbitrary. 

By using (2.27), (3.5) and (3.6), we get 

Theorem 3.3. For a stiffness matrix A on domain Q, its maximum eigenvalue 
can be bounded by 

(3.18) CiC$aP3Amin(M) < Amax(A) < C2CEP4Amax(M), 

and its minimum eigenvalue can be bounded by 

(3.19) C34EAmin(M) < Amin(A). 

Therefore, the condition number can be bounded by 

(3.20) K,(A) < CEP4K(M.), 

where CE = C CE independent of p. 
C3 'F 

Remark 5. We can also derive a lower bound for the condition number of the stiff- 
ness matrix [12]: 

(3.21) CE PM < (A), 

where CE~ = 1E. where OE C4CE 

Note that Theorem 3.3 is valid in particular when Q is K, the standard element. 
When orthonormal basis functions on K are used, we get M = I; thus, from 
Theorem 3.3, and Theorem 2.1 we have 

Corollary 3.1. For a set of basis functions which are orthonormal on K c Rd, 
d > 1, the condition number of stiffness matrix A on Q can be bounded independent 
of dimension d 

(3.22) i (A) < Cp4, 

where the constant is independent of p. 

The result in Corollary 3.1 is analogous to a well-known result in the h-version, 
where, under uniform or quasi-uniform mesh, the condition numbers are bounded 
by O(h-2), independent of the dimensions of the spatial domain of the problem 
[15]. 
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Example. Consider Q = K and a set of basis functions consisting of normalized 
Legendre polynomials on the interval [-1,1]. Because this set of basis functions is 
orthonormal, then, from (3.20) and (3.21), cp3 < /S(A) < Cp4. In [22], a similar 
result for this set of basis functions was also obtained by a detailed estimation. 

Remark 6. The example above indicates that the bounds in (3.20) and (3.21) for 
the normalized Legendre polynomial basis functions are quite tight, but it is easy 
to find other basis functions for which the bounds given by (3.18)-(3.21) are not 
tight. For example, for a set of hierarchical basis functions that will be discussed 
in Section 4, in the case of 1-D problems on the standard element [-1, 1], it can 
be shown (see Section 4) that i,(M) < Cp4, and we get cp-1 < i;(A) < Cp8 from 
Theorem 3.3; but it can be shown (see Section 4) that i,(A) is constant, independent 
of p. 

Remark 7. The above discussion indicates that it is probably not the best choice in 
1-D to choose basis functions that are orthonormal, in the sense of the magnitude 
of condition numbers. However, if we choose orthonormal basis functions for both 
2-D and 3-D problems, we have i(A) < Cp4, independent of dimensions. Therefore, 
Theorem 3.3 can be used as a guide in designing basis functions in higher dimen- 
sions. A good balance between orthonormality of basis functions and issues such 
as numerical stability, hierarchical structure, easy implementations, etc. is essential 
for designing new, efficient basis functions in higher dimensions. 

Remark 8. Note that 

(3.23) n(M) _< aEnS(MK ) 

(see Remark 2). Therefore, to get an upper bound of the condition number of 
the stiffness matrix A, we need to estimate Amax(MK) and Amin(MK) only, where 
MK is the mass matrix on the standard element. Once a set of basis functions 
is chosen for the standard element, MK can be computed offline once for all p = 
1,2.... Therefore, Amax(MK)) Amin (MK) and I;(MK) can also be computed for 
p = 1,2,..., and are independent of the underlying problem. For general basis 
functions 0= {=0i(j(,7)}, by using the Schwartz inequality, we have the following 
upper bounds for Arnax(MK): 

(3.24) Amax(MK) F 0lqijIL2l max 1ljl?IL2 <j<K 
and 

KP2 

(3.25) Armax(MK) ? E I!f11lL2 
Li=1 j 

4. EXPLICIT BOUNDS BASED ON A SET OF HIERARCHICAL BASIS FUNCTIONS 

In the previous sections, the bounds for the minimum eigenvalues, maximum 
eigenvalues and condition numbers are derived based on general basis functions. 
Because of this generality, it is understandable that, for certain types of basis 
functions, the bounds given above may be quite loose. Thus, it is possible to de- 
rive better bounds for a specific set of basis functions by exploiting its particular 
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4 33 

r2 

2 

2 

FIGURE 1. The standard quadrilateral element 

structure or properties. In this section, we focus our attention on a set of spe- 
cial hierarchical basis functions and derive explicit and quite sharp bounds for the 
minimum eigenvalues, maximum eigenvalues and condition numbers [13]. 

Here, we discuss briefly a class of hierarchical basis functions that has been 
popularly used in the p-version. We only present the hierarchical basis functions 
associated with quadrilateral elements. 

Let K [-1,1] x [-1,1] be a standard quadtilateral element as shown in Fig- 
ure 1. 

There are four nodal shape functions associated with each vertex: 

(4.1) N(1) 
4 

(2) ~~~1 
(4.2) N(2)( 1) = +()(- 4 

(3) ~~~1 
(4.3) N(3 (( )= 1( + () (I + ) 

4 

For p > 2, there are p - 1 shape functions associated with each side: 

(4.5) SI,]Q<7) - -(1 -I i ~~~2 

(4.6) S[2]( ) I(+( 2 

(4.7) S4[3] (())2 

(4.8) S[4](,) = (-2) 

i 2,3,...,p 

where 
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and Pyj(t) is the Legendre polynomial of degree j - 1, j = 2,3,... ,p. 
Internal shape functions: 

(4.10) I(1) = (02 ((0(2(1), 

(4.11) I(2) - P3 (()92(n), 

(4.12) j(3) - 20(p3(7), 

(4.13) I(4) - 04( }02(71), 

(4.14) J(5) - 03((103(1), 

(4.15) J(6) - 2 (04 

(4.16) etc. 

For the so-called trunk space [20], for p > 4, there are (p - 2) (p - 3)/2 internal 
shape functions. For the so-called product space [20], for p > 2 there are (p _ 1)2 
internal shape functions. 

This set of basis functions is hierarchic because the finite element space VP-1, 
which is spanned by the above polynomial basis functions with degree up to p - 1, 
is completely embedded into the space Vp which is spanned by the above basis 
functions with degree up to p. If we define 

1- t _ 1t 
po (t) = 2 I (t) - 2 

22 
then the basis functions defined above can be expressed as 

4ij((,) = wi(()9Oh(), i > O,j > 0 

with sign adjustment for the side basis functions on sides 3 and 4. 
In general, for a given integer d > 1, a class of hierarchical basis functions on 

the standard element K = [-1, I]d can be defined as 

(Dii.. (xi) Xi) ... **xi) = Pi(xi)> j(xj) . . .(pi(xi), 

i,i III . .,I = O, 1, . .. , p. 

After any type of ordering, we can denote the above basis functions as 

0 [01 (X), 02 (X), * * * , OKp (X)] . 

For simplicity, we drop the subscript K in this section. Define 

(4.17) S 1= K(V((x))'(V0(x))dx. 

We call S the derivative matrix. We have 

A = S + M, 

where A is the stiffness matrix and M is the mifass matrix. 
Let RKP be a vector space, where Kp is the number of degrees of freedom of the 

stiffness matrix A. Let Up be a subspace of RfKp consisting of those vectors such 
that their components corresponding to the basis function ED0o...o are zero. Up can 
be interpreted as a subspace of RfKP by eliminating a vertex variable. Define 

XTSX 
(4.18) Amin(S) min T 

The following theorem is our main result of this section. 
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Theorem 4.1. For the hierarchical basis functions of the product space, there exist 
positive constants c and C, independent of p, such that 

(4.19) c < Amax(M) < C, 

(4.20) Cp 4d < Amin (M), 

(4.21) c < Amax(S) < C, 

(4.22) Amin(S) 0, 

(4.23) Cp-4d1 < Amin (S) 

(4.24) c < Amax (A) < C, 
(4.25) C-4(d-1) < Amn() 

where d > 1 is the number of dimensions. 

Remark 9. Our discussions are restricted to the standard element K, but the results 
are valid for the general model problem (2.1) on a general domain Q due to Lemma 
2.1 and Theorem 2.1. 

Before proving the above theorem, we first derive some results using (4.23). De- 
fine A1 (S) to be the second smallest eigenvalue or the minimum nonzero eigenvalue 
of S. We have lower bound for A1 (S) as follows. 

Corollary 4.1. There exists a positive constant c, independent of p, such that 

(4.26) A1(S) > Cp-4(d-1) 

Proof. Recall that Up is a subspace of RKp with dimensions Kp -1. By the Courant- 
Fisher minimax theorem, 

A1 (S) d max min XTSX 
dim (V)=Kp-1I O#xGV XTX 

XTSX 
> min T 

o#xGUp X X 

> Amin (S) 

> cp-4(d-1). 

If we define 

Amax (S) 
AI(S) 

then we have the upper bounds of the condition numbers as follows. 

Corollary 4.2. There exists a positive constant C, independent of p, such that 

(4.27) i(M) < Cp4d 

(4.28) K(S) < Cp4 (d - 

(4.29) K(A) < Cp4(d-1), 

where d > 1 is the number of dimensions. 

The following lemma pertains to the lower bounds of the condition numbers. 
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Lemma 4.1. There exists a positive constant c, independent of p, such that 

(4.30) cp4d < i (M), 

(4.31) cp4(d-1) < K;(S), 

(4.32) p4-(d-1) < 
K (A) 

where d > 1 is the number of dimensions. 

Proof. Let MI, SI and AI denote submatrices of M, S and A corresponding to 
the internal basis functions, respectively. It has been proved in [16], [17] that there 
exist positive constants c- and C such that 

(4.3) 
- 4d < K;(Ai) <p4d 

( 34) Cp~~-4(d-1) < K;(SI < 
- 

4(d-1 

By Poincare's inequality, it is easy to see that 

cr,(SI) < r,(AI) < Cr,(SI). 

Thus from (4.34) we get 

(4 5) 
- 4(d-1) < K;(AI) <- C4(d-1 

Note 

/s (MI) < /(M), 

-K(SI) < (S), 

r,(AI) < r,(A). 

Thus from (4.33)-(4.35), the proof is completed. D 

Theorem 4.1 contains only lower bounds for the minimum eigenvalues. We can 
easily get upper bounds of the minimum eigenvalues as follows. 

Corollary 4.3. There exists a positive constant C, independent of p, such that 

(4.36) Amin (M) < Cp 

(4-37) Al ~~>v(S) < Cp-4(d-1)) 

(4.38) Amin (A) < Cp-4(d-1). 

Proof. We prove only (4.36) and the proofs of (4.37) and (4.38) are analogous. 
From Theorem 4.1 

Amax(M) < C. 

From Lemma 4.1, 

/i(M) > cp4d. 

Thus 

Amin(M) = (M) < = Cp-4d 

K(M) CP 4d ~ ~ ~ 
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TABLE 1. Maximum eigenvalues of S, M and A 

p 1-D 2-D 3-D _ 

S M A S M A S M A 

1 1.0 1.0 1.3333 1.0 1.0 1.0 1.0 1.0 1.3333 
2 1.0 1.3506 1.8110 1.7225 1.8242 2.93631 2.8251 2.4638 4.5702 
3 1.0 1.3506 1.8110 1.7225 1.8242 2.93631 2.8251 2.4638 4.5702 
4 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5784 
5 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5787 
6 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5787 
7 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5787 
8 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5787 
9 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5787 
10 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5787 
11 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5787 
12 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5787 
13 1.0 1.3510 1.8126 1.7246 1.824 2.9404 2.8305 2.4660 4.5787 
14 1.0 1.3510 1.8126 1.7246 1.824 2.9404 - - - 

15 1.0 1.3510 1.8126 1.7246 1.824 2.9404 - - - 

16 1.0 1.3510 1.8126 1.7246 1.824 2.9404 - - - 

17 1.0 1.3510 1.8126 1.7246 1.824 2.9404 - - - 

18 1.0 1.3510 1.8126 1.7246 1.824 2.9404 - - - 

19 1.0 1.3510 1.8126 1.7246 1.824 2.9404 - - - 

20 1.0 1.3510 1.8126 1.7246 1.824 2.9404 - 

Remark 10. Corollary 4.2 and Lemma 4.1 imply that the condition numbers of S 
and A are equivalent to p4(d-1) while the condition number of M is equivalent to p4d. 

Similarly, Theorem 4.1 and Corollary 4.3 imply that the minimum eigenvalues of S 
and A are equivalent to p- (d- 1) while the minimum eigenvalue of M is equivalent 
to p-4d 

We next present some numerical evidence to verify that the bounds for the 
minimum and maximum eigenvalues are correct. Table 1 reports the maximum 
eigenvalues of S, M and A in 1-D, 2-D and 3-D for various p levels, which indicates 
that the maximum eigenvalues of S, M and A are constants, independent of p. 
Assuming -that the minimum eigenvalues decay like cpa, we estimate the decay 
factor a, using the following formula: 

log (Api) / )(p ) 

a log(p/(p- 1)) , 

and Table 2 reports the decay factor a of S, M and A in 1-D, 2-D and 3-D for 
various p levels. From Table 2, we can see that the minimum eigenvalues of S and 
A decay like cp-4(d-1) and the minimum eigenvalues of M decay like cp-4d. These 
numerical results are very consistent with and support the theoretical results. 

The proof of Theorem 4.1 is divided into three parts. In part 1, we prove 
everything that is related to the mass matrix M. In the second part, we focus 
on the matrix S. In the part 3, we prove the results in Theorem 4.1 for the stiffness 
matrix A = S + M. The proofs are given only for d = 2 and proofs for other 
dimensions are analogous. 
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TABLE 2. Decay factors al of minimum eigenvalues of M, S and A 

1-D 2-D 3-D 
S M A S M A S M A 

p a a a a la a a a a 

2 0 -2.755 0.7636 -3.1065 -5.5111 -3.4096 -5.9427 -8.2667 -6.0940 
3 0 -1.8290 0 -1.2290 -3.6580 1.0623 -2.9201 -5.4871 -2.0921 
4 0 -3.2198 -0.0083 -3.6139 -6.4378 -3.6910 -6.8738 -9.6568 -6.8948 
5 0 -2.4316 0 -1.9223 -4.8632 -1.8632 -4.3012 -7.2949 -4.3010 
6 0 -3.4884 0 -3.8458 -6.9769 -3.8782 -7.3552 -10.465 -7.3611 
7 0 -2.7890 0 -2.3663 -5.5780 -2.3395 -5.6686 -8.3670 -5.1313 
8 0 -3.6342 0 -3.9481 -7.2685 -3.9647 -7.5940 -10.902 -7.5963 
9 0 -3.0188 0 -2.6630 -6.0376 -2.6487 -5.6686 -9.0565 -5.6690 
10 0 -3.7199 0 -3.9961 -7.4399 -4.0057 -7.7232 -11.159 -7.7247 
11 0 -3.1170 0 -2.8716 -6.3540 -2.8632 -6.0408 -9.5311 -6.0411 
12 0 -3.7749 0 -4.0202 -7.5499 -4.0262 -7.7998 -11.325 -7.8001 
13 0 -3.2919 0 -3.0253 -6.5838 -3.0199 -6.3122 -9.876 -6.3125 

19 0 -3.5019 0 -3.3100 -7.0038 -3.3081 

20 0 -3.8769 0 -4.0437 -7.7538 -4.0452 

21 0 -3.8897 0 -3.3715 -7.0938 -3.3700 - 

22 0 -3.5844 0 -4.0439 -7.7794 -4.04511 - 

23 0 -3.9001 0 -3.4230 -7.1689 -3.4219 - 

24 0 -3.6163 0 -4.0435 -7.8003 -4.0444 - - - 

25 0 -3.9088 0 -3.4668 -7.2327 -3.4659 - - - 

26 0 -3.6437 0 -4.0427 -7.8176 -4.0434 - - - 

27 0 -3.9160 0 -3.5045 -7.2874 -3.5038 - - - 

28 0 -3.6674 0 -4.0416 -7.8321 -4.0423 - - - 

29 0 -3.9222 0 -3.5372 -7.3349 -3.5367 - - - 

30 0 -3.6883 0 -4.0405 -7.8444 - - - - 

OO 0 -4 0 -4 -8 -4 -8 -12 -8 

4.1. Bounds for mass matrix M. 

Lemma 4.2. There exists a positive integer NZ independent of p, such that the 
number of nonzero entries in each row of M is less than or equal to NZ. 

Proof. Consider d = 2. Define 

(4.39) J(i,j) = j pi(t)>pj(t)dt. 

Note that 

( 2/3 if j=O J 1/3 if j= 1 
(4.40) J(O,j) = -1/V if j = 2 

{ 17(3 10) if j=3 
0 if j>3, 

( 2/3 if j = 1 

(4.41) J(1j)= 1 ) iffj=2 O1/3 t if j=23 
0 if j >3, 
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2/((2i+1)(2i-3)) ifj=i,i> 1 

(4.42) 0(ij 
O if j=i+1,i>1 

-1/ ((2i + 1) V/(2i +?1)(2i + 3)) if j = i + 2, i > 1 

0 if j > i+2,i > 1. 

Thus, 

J(ij j) = 0 if ji - jl > 3. 

Given any two basis functions 

(Dij q( ) = Wi M )9j (,q) 

and 

bmn (?( v) =(P ?; n()v 

we have 

J ij((,7>T'mn((07q)d(d? = J(i,m) x J(j,n) = 0 

if li - ml > 3 or Ii - nj > 3. In other words, there are at most 7d(d = 2 in this 
case) nonzeros for each row of M. C 

Lemma 4.3. Let 

M = (mij). 

There exists a constant C, independent of p, such that for all i, j 

lmij I < C. 

Proof. Consider d = 2. From (4.40)-(4.42), we have 

lJ(i,j), < 2 

Given any two basis functions 

and 

/mn ((;ri) = A (; ) r1 

we get 

f ~~~~~~~~~~~4 ]D ij((, r)>mn((?,?)d4d?) = J(i,m) x J(j,n)l < ?. 

Lemma 4.4. There exist constants c and C, independent of p, such that 

C < Amax(M) <?C. 

Proof. The left hand side inequality follows by noting that at least one diagonal 
term of M is constant, independent of p. The right hand side inequality follows 
from Lemmas 4.2-4.3 and the Gershgorin circle theorem [14]. [1 

Lemma 4.5. There exists a constant C, independent of p, such that 

Amin(M) > Cp- 



1440 NING HU, XIAN-ZHONG GUO, AND I. NORMAN KATZ 

Proof. Consider d = 2. Let bij ((, r) be the basis functions defined above. We now 
define 

(Dij (,)=Pi (0 pj (,q), 

where P is the normalized Legendre polynomial. Let B be the transformation 
matrix from b to D: 

Since 

(4.43) J qT = 

thus 

M = 'Kb = B (JK@T) BT = BBT 

Noting that 

Amin (M) = 1 
Amax(M-1)' 

we next prove that there exists a constant C, independent of p, such that 

(4.44) Amax(M-1) < Cp8. 

Since 

(p((~) = 1(2z 2 l) Pi(( - 2/PP.i\2(() 
V2(2i -1) 2i + 13 

thus 

i() 2i + 1 
P-2( P()= Pi -P2(() ? /(2i - 1)(2i + 1)q$i(() 

2i-3 

2i +1 2- 3 
= _ ( ( P Pi-4(() + /(2i - 5)(2i -3)0i-2) 2i -3 2i- 7 

+ /(2i -1)(2i?1 )q$i(() 

2i + 1 
i -Pi-4(0) + ( + + 1)(2i - 5Xi-2 + +,/(2i - 1)(2i + 1) (7p) 

In summary, for even i = 2j, 

Pi vF2 =i ~ Po +( v2i+ E1 V4- 2k (() 
k=1 

and for odd i = 2j + 1, 

- 2i+1- i1 
piPO(() Vi =L V4k/ + 1X02k+1(l 

k=1 

It follows that there exists a constant C, independent of i, for 0 < i < p, such that 

(4.45) Pi(() = ECikk(), 

k=0 
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where C| < Cp for all k. Thus 

k k (4.46) bi ( = Z Ckok (()ZECol2l(?) = ZZECkCt2ok ((?l (?) . 
k=0 1=0 k=0 1=0 

Let 

ekl = CkCI. 

Since 

Ck < Cp, C-| < Cp, 

we have 

leklI < Cp2. 

Note that B-1 is the transformation matrix from the base b to b and (4.46) is 
also a transformation from the base b to b. Therefore, by (4.46), if 

B-1 = i(j ) 

there exists a constant C, independent of p, such that 

*j| < Cp2 

for all i, j. Note that 

M-1 = B-TB1. 

Since the order of M and B are Kp O (p2) in 2-d (Kp - Q(pd) in general), 
thus, if 

Kp 

M (nij), in= E bkibkj, 

k=1 

there exists a constant C, independent of p, such that irnijI < Cp6. By the Gersh- 
gorin circle theorem, 

Amax(M-1) < p8. 
E 

4.2. Bounds for matrix S. 

Lemma 4.6. There exist constants c, C, independent of p, such that 

C < Amax(S) < C. 

Proof. The proof is analogous to that of Lemma 4.4. D 

Lemma 4.7. There exists a constant c, independent of p, such that 

(4.47) Amin(S) ? cp 

Proof. Consider d = 2. Define 

OKq5( 0q5 
JK O'1 0dr',, 
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Clearly, 

S = SC + S- 

Since 

if kz==lO or 1 
| ,'k(t) (t)dt = --1/2 kz=0,1=1 ork=1,1=0, 

-1 1 5 k bkl if k > 1 or I > 1 

thus, using order i x (p + 1) + j, SC is of block diagonal form 

B1 0 O0 

(4.48) S= 0 B2 - ? 
... ... ... ... 

0 O Bpj 
where 

B 1 [M -M] 

(4.49)B1= 2 -M M ' 
Bi= M, i> 1, 

and M is the 1-D mass matrix. 
Given any vector x E RKP, decompose x into 

(4.50) x-(x ,x , ... ,xP), 

where 

(4.51) x k= (Xk,OXk 1,j Xk,p). 

Thus 

xTSx = (x - 2 (X?) Mx1 + (x1) Mx1] + (xk)T Mxk, 
2 ~~~~~~~~~~k=2 

and we get 

xTSx T 1 [(x) Mx- 2 (x) Mx1 + (x1)T Mx1] + Amin (M) (x k)T Xk. 

k=2 

Since M is symmetric positive definite, there exists an orthogonal matrix Q such 
that 

(4.52) M =QTDQ, 

where D is a diagonal matrix with the eigenvalues of M as its diagonal terms. 
Define 

yk = Qxk,k = 0,1,.. ,p. 

Then 

xTSCX > [(yO)TDyo -2(y)TDyl + (yl)TDyl] + Amin(M) E(Y )T8 
k=2 

1 ~~pp p 
> 2rAmin (M) E (Y2,1 + Y2,1 - 2yo,lyi,1) + Amin (M) E EY 

1=0 k-2 1=0 
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Since 

p p 

x 2 
= (xk)TXk = (yk)Tyk = Y2,k k 0, 1,.. . p 

1=0 1=0 

P P 

EXo,lxi1' = (X0)TX1 = (yO)Tyl _ 1 

1=0 1=0 

we get 

1 ~p p p 
xTSx A 2 (M) >(x I1 + X2 -2xO,jxj,1) + Amin(M) EE k,1 

1=0 k=2 1=0 

= IX1 + IX2, 

where 

IX1 1Amin(M) E (x2 1 + X,1 -2x0,jxj,j) 2 M) 
1=0 

p p 

IX2 = Amin (M) E E Xk,1 

k=2 1=0 

Using the ordering i + j x (p + 1) and the decomposition (4.50)-(4.51), we can 
similarly prove that 

xTS~~x ~ 1 p p 

X S? X > 2 Amin M) S (k,0 + k,i - 2Xk,oXk,l) + Amin (M) >33k,1 
k=O k=0 1=2 

= IY1 + IY2, 

where 

p 
1Y1 1 

2Amin(M) E (X240 + X2,1 - 2Xk,OXk,l) IYI 2Amin(M k 
k=0 

p p 

1Y2 Amin(M) kXk,1 

k=O 1=2 

Therefore, 

xTSx xTSCx + xTSnx > IX1 + lY1 + 1X2 + 1Y2. 

Note that the term 1X2 includes all the components of x except Xk,l for k 0 or 
1 and I = 0, 1, . . . ,p. The term IY2 includes all components of x except Xk,l for 
k = 0, 1,... , p and 1 = 0 or 1. Thus, IX2 + IY2 includes all components of x except 
Xk,l for k-0 or 1 and 1 = 0 or 1. 

Next, we will prove that for any x Up 

(4.53) IX1 + IYi >4Amin (M) k, 
"_-n 7_n 
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To this end, notice 

>1 
x2, 2,1- 2oll,l1 1X1 + 1Y1 > 2 Amin (M) E (X2 1 + X2 1 - 2xo,iX1,1) 

1=0 
p 

+ 2rAmin (M) E (X2,0 + X4,1 - 2Xk,0Xk,l) 
k=0 

Since x E Up, xo,0 0, so 

IXi + IYi > -Amin (M)(Xl,o + X0,1 + xi 'I-2xolxl,l 

+ x2,1 + X2 o + X2 , - 2x,oxi,i) 
1~~~~~ 

=Amin (M) (2xo,1 + 2x2,0 + 2X2,1-2O,lxl,l - 2xj,ox,j) 

Using the inequality 2ab < a + sb2 with s = -, we get 

3 2 22 2xo,1lx,i < -xo 'I + _xI,l, 

2x1,xl,l < 2X +2 2 

Therefore, 

ix1 + IY ? > 2 Xmin (M) (2X0,1 + 2Xl o + 2Xl 

= Amin (M) (x01 + x 1,o + xl,1)- 

The inequality (4.53) follows from xO,o = 0 for any x E Up. 
So far, we have proved that there exists a constant c, independent of p, such that 

xTSX ? CAmin(M)XTX 

where M is the 1-D mass matrix. The desired inequality follows from (4.20) which 
has been proved in Section 4.1. C 

4.3. Bounds for the stiffness matrix A. 

Lemma 4.8. There exist constants c, C, independent of p, such that 

c < Amax(A) < C. 

Proof. The proof follows from the proofs of Lemmas 4.4 and 4.6. D- 

Given any vector x E RfKp, define its associated function u by 

Kp 

U= Exiqi((q)). 
i=l1 

Let w be such a vector in ftKP associated with u =1. 
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Lemma 4.9. The function u associated with x E RKp is constant if and only if 
Sx = 0. 

Proof. Omitted. C 

Lemma 4.10. There exists a constant c, independent of p, such that 

(4.54) Amin(A) > cp4(d1). 

Proof. Consider d = 2. Let Q (q0,ql q'll , qKp-l) be the orthogonal matrix 
consisting of the eigenvectors of S such that qo is the eigenvector associated with 

the zero eigenvalue. Given any x, define y = QTx with y = (Yo, Yi, ,YKP-1) 

x0 = yoqo and x1 = Kp-l yiqi. Obviously 
T T 0 1 

x x=y y, X = X+X. 

Note that 

x TAx = xSx + XTMX, 

and 

xTSX = (XO)TSXO + 2(xl)TSXO + (Xl)TSXl. 

Since Ao(S) 0, we have 

Sx0 = yoSq0 = yoAo(S)qo = 0 

and 

xTSX (X )TSXl 

= (I1yiq)T ( yiAi(S)q%) 

KP-1 

S Ey ~2Ai(S) 
i=l 

KP-1 

> Al(S) Yi 
i=l 

Using Corollary 4.1, we get 

) X ~~~SX > Cp-4 E 2 Ki=l (4.55) xTS?c4 

Let us now turn our attention to xTMX. Notice that 

xTMX = (xO)TMXO + 2(xl)TMXO + (Xl)TMXl. 

Let uo and u1 be the functions associated with xo and x1, respectively. Since 

Sx0 = 0, using Lemma 4.9, we know uo is a con'stant, i.e. uo = ae, where ao is scalar 

constant. Thus xo = aw and 

xTMx I K IKI0)2 +2 uuI+ 1)2 

= 42+2JaU1+ J(U1)2 



1446 NING HU, XIAN-ZHONG GUO, AND I. NORMAN KATZ 

where 4 comes from the area of the standard element K in 2 - D. Since for any 
constant s > 0, 

2 Ja u > _ (s Ja J (U ) = (4sa + J(uU)2) 

we get 

xTMx > 4(1 -Us) ? (1 D J;u1) 

Note that, from (4.20), 

J(U 1)2 (x1 )TMXl > 
Amin(M)(X1)TX1 

> 
Cp-8?(XITX 

Recall that x1 ZKp-l y qi Thus 

Kp-1 

(U1)2 = (Xl)TMxl 
> cp-8 2 

and 

(4.56) XTMX > 4(1 - S)a2 + - ') -8 12 

i= 1 

Combining (4.55) and (4.56), we get 

xTAx > 4(1 _ S)a2 + C [p4+ (1 ) -8 -2 

Setting s +p-4/2, we have 

xTAx >4 ( p< a/2) U2+C (-4 - p 
) 12 

Thus, there exists a positive constant c, independent of p, such that 

xTAx > cP 4 42 + K 2 

Since xo = aow, 

2= (o)Tx = a2wTw 42 

Therefore, there exists a positive constant c, independent of p, such that 

Kp-1 

x 5Ax > cp Yo + cp-4yTY. 
i= 
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TABLE 3. Maximum eigenvalues of S, M and A based on trunk space 

p 1-D 2-D 3-D 
S M A S M A S M A 

1 1.0 1.0 1.3333 1.0 1.0 1.333 1.0 1.0 1.3333 
2 1.0 1.3506 1.8110 1.459 1.693 2.261 1.850 2.033 2.6667 
3 1.0 1.3506 1.8110 1.459 1.693 2.261 1.850 2.033 2.6667 
4 1.0 1.3510 1.8126 1.7222 1.824 2.937 2.411 2.417 4.1896 
5 1.0 1.3510 1.8126 1.7222 1.824 2.9937 2.411 2.417 4.1896 
6 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.465 2.4660 4.5764 
7 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.465 2.4660 4.5764 
8 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 

9 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
10 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
11 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
12 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
13 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
14 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
15 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
16 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
17 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
18 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
19 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 
20 1.0 1.3510 1.8126 1.7246 1.8252 2.9404 2.8305 2.4660 4.5787 

The proof is completed by noting that 

T T 
X X=y y. 

The proof of Theorem 4.1 is now complete. 

So far, our analysis has been restricted to the set of hierarchical basis functions 
in the so-called product space. Now, let us consider the trunk space. Since, for 
the same p level, the basis functions for the trunk space are a subset of the basis 
functions for the product space, Theorem 4.1 is applicable to the trunk space as 
well. 

The only question is whether the bounds in Theorem 4.1 are still sharp based 
on the basis functions in the trunk space? In Tables 3 and 4 we provide numerical 
results for the trunk space, which indicate that the bounds given in Theorem 4.1 
are still quite sharp for the trunk space. 

From Tables 3 and 4, we can see that the maximum eigenvalues are all constants 
and for large p, they are basically the same as those based on the product space. 
The minimum eigenvalues are larger in magnitude than the corresponding ones 
based on the product space, but they decay at the same rates as do those based on 
the product space. The same can be said about the condition numbers based on 
the trunk space. 

The bounds given in Theorem 4.1 and Corollaries 4.1, 4.2 are similiar to the 
results in [16], [17]. There are, however, important differences. In [16], [17], basis 
functions are restricted to internal modes (so-called "Bubble" modes), whereas ours 
consider all modes. This is essential for practical finite element analysis. Also our 
results apply to the matrices S, M and A S + M; the results in [16], [17] apply 
only to S, M separately. 
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TABLE 4. Decay factors ae of the minimum eigenvalues of S, M 
and A based on trunk space 

2-D 3-D 

S M A S M A 

p a a a a a a 

2 -1.2822 -2.7556 -1.3956 -1.5849 -2.7556 -1.6619 
3 0.0000 -2.2229 -0.0041 -0.3910 -2.5582 -0.4645 
4 -4.3956 -3.7072 -4.8470 -4.4790 -3.2364 -4.4478 
5 -0.7407 -3.3196 -0.4117 -1.2925 -4.0727 -1.3573 
6 -2.7568 -6.5748 -3.0311 -7.1625 -6.1517 -7.2718 
7 -2.4309 -4.3091 -2.1738 -1.9838 -4.8139 -1.8764 
8 -4.1599 -7.1754 -4.2895 -6.3193 -10.255 -6.4494 
9 -2.0999 -4.9205 -1.9805 -3.7383 -5.8688 -3.6476 
10 -4.0468 -7.4596 -4.1246 -7.5008 -10.749 -7.5679 
11 -2.5378 -5.3758 -2.4682 -4.4198 -6.7169 -4.3723 
12 -4.1506 -7.6223 -4.2013 -8.0126 -11.165 -8.0477 
13 -2.7525 -5.7206 -2.7075 -4.7168 -7.3604 -4.6951 

19 -3.1304 -6.3733 -3.1154 - - - 

20 -4.2112 -7.8759 -4.2242 - - - 

21 -3.2131 -6.5162 -3.2020 - - - 

22 -4.2068 -7.9012 -4.2168 - - - 

23 -3.2821 -6.6363 -3.2736 - - - 

24 -4.2009 -7.9203 -4.2087 - - - 

25 -3.3403 -6.7386 -3.3336 - - - 

26 -4.1942 -7.9350 -4.2004 - - - 

27 -3.3900 -6.8268 -3.3847 - - - 

28 -4.1873 -7.9466 -4.1924 - - - 

29 -3.4329 -6.9305 -3.4286 - - - 

30 -4.1804 -7.9559 -4.1845 - - - 

00 -4 -8 -4 -8 -12 -8 

5. CONCLUSION 

In this paper, bounds are derived for the minimum eigenvalues, maximum eigen- 
values and condition numbers of stiffness matrices based on the p-version of the 
finite element method and general basis functions. We present a quite general, yet 
simple approach to this problem. For a set of hierarchical basis functions that has 
been popularly used in the p-version, explicit bounds are derived for the eigen- 
values of the mass matrix M, the derivative matrix S and the stiffness matrix 
A. Our results show that the condition number of the stiffness matrices grow like 
p4(d-1), where d is the number of dimensions. Numerical simulation results are also 
provided, which verify that our theoretical bounds are correct. Numerical results 
for condition numbers have been reported by Babuska et al in [6] and [7]. They 
observed empirically (for p < 8) that the condition numbers grow like p3 in 2-D 
based on their numerical examples. Our results show theoretically and numerically 
that in the asymptotic range the condition numbers in 2-D grow like p4. Our re- 
sults in Corollary 4.2 disprove a conjecture in [22] in which the authors assert that 
"regardless of the choice of basis, the condition numbers grow like p4d or faster." 
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